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INTRODUCTION: Sumudu transform method, for 
solving fractional type ordinary differential equations 
was established by Belgacem and carried further for 
more contributions in the field by Kilckman and oth-
ers working in this area. Adomain decomposition 
method was George Adomain; it is one of the very 
potential methods for analyzing such differential 
equations. In this paper objective is to present more 
specific and appropriate solutions to differential equa-
tions fractional order. 

Many advance studies in solid state physics, control 
systems, signal processing, thermodynamics, and sto-
chastic processes involve fractional type ordinary 
differential equations and applications.  Various meth-
ods are instrumental till date for solving the fractional 
type ordinary differential equations which includes 
Adomain decomposition, Homotopy decomposition 
originated by expert researchers in this field About 
the Sumudu Transform: 
Sumudu transform is defined as  

(ݏ)ܨ = [(ݏ)݂]ܵ  =  න ௧ି݁(ݐݑ)݂
ஶ

଴
ݑ,ݐ݀ ∈ {−߬ଵ, ߬ଶ} 

Over the set of functions given by 
 A =  { f(t) | ∋ M, 

 ߬ଵ, ߬ଶ > 0, |(ݐ)݂| < ݁ܯ
|௧|
ఛభ , ݐ ݂݅ ∈ (−1)௝ × [0,∞)} 

Two basic types of Fractional order derivatives: 
Fractional calculus is a widely used mathematical 
concept for applied sciences.  Nevertheless, it is 
somehow very difficult to deal and merely in last 
few years researchers have been encouraged to use 
the associated concepts. Various types of fractional 
order integrals were introduced by Poldubny for a 

simple interpretation of concept. He proposed a 
useful real field and material explanation of frac-
tional integral in terms of non-homogeneous and 
changing time scale.  Some of the prominent frac-
tional derivatives and integrals with their inherent 
characteristics are expressed as follows. 
There are plenty of ways to deal with fractional deriv-
atives, following are few of them: 

(i) Riemann-Liouville fractional derivative and   
fractional integral 

(ii) Caputo Fractional derivative 
(iii) Jumarie’s Fractional derivative 

We review some concepts of derivatives and integrals 
which are useful for further research in fractional cal-
culus. 

Definitions:  

(i) Riemann-Liouville fractional integral 
(ݔ)݂ ݂ܫ ∈ ,ܽ]ܥ ܾ]ܽ݊݀ ܽ < ݔ < ܾ,    

Riemann-Liouville fractional integral of f (X)is denot-
ed by I஑ା

ஒ f(x) and is defined as, 

I஑ା
ஒ f(x) =

1
(ߚ)ߛ

න
(ݐ)݂

ݔ) − ଵିఉ(ݐ
ߚ,ݐ݀ ∈ (−∞,∞)

௫

௔
 

And ିܦఈ൫݂(ݐ)൯ = ଵ
ఊ(ఈ)∫ ݐ) − ߬)(ఈିଵ)௧

଴ ݂(߬)݀߬. 
0< ߙ ≤ 1; 

Abel-Riemann fractional integral is given 
byܬ∝, ൯(ݐ)൫݂∝ܬ =  ∫ ݐ) − ߬)(ఈିଵ)௧

଴ ݂(߬)݀߬, ݐ ≥ ߙ,0 >
0; 
Using this definition, ܬ∝, 
(௡ݐ)∝ܬ = ఊ(ଵା௡)

ఊ(ଵା௡ାఈ)
=(௡ݐ)∝ܦ ݀݊ܽ,(௡ାఈ)ݐ ఊ(ଵା௡)

ఊ(ଵା௡ିఈ)
 (௡ିఈ)ݐ
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(ii) Riemann- Liouville fractional derivative: 
(ݔ)݂ ݂ܫ ∈ ,ܽ]௡ܥ ܾ]ܽ݊݀ ܽ < ݔ < ܾ,   

The Rieman Liouville fractional derivative of f (x) is 
denoted by  
஽ೣߙ

ഁ
= ଵ
ఊ(௡ିఉ)

ௗ೙

ௗ௫೙ ∫
௙(ఛ)

(௫ିఛ)(ഁష೙శభ)
௫
௔ ݀߬,݊ − 1 < ߚ < ݊ 

Abel-Riemann fractional derivative is given by, 
൯(ݐ)൫݂∝ܦ

= {
1

−݉]ߛ ݊]
݀
௠ݐ݀

න
(ݐ)݂

ݐ) − ߬)(ఈି௠ାଵ)

௧

଴
−݉ ݎ݋݂  1 < ߙ

< ݉; 
൯(ݐ)൫݂∝ܦ = ௗ೘

ௗ௧೘
ߙݎ݋݂,(ݐ)݂ = ݉,  

݉ ∈ ܼା ߙ,
∈ ܴା ܽ݊݀ ݐ ݏ݅ ∝ܦℎ݁ ݀݁ݎ݁ݐܽݎ݁݌݋ ݁ݒ݅ݐܽݒ݅ݎݎ 

(iii) Fractional order derivative concept given by Ca-
puto is as follows: 

(ݔ)݂ ݂ܫ ∈ ,ܽ]௡ܥ ܾ]ܽ݊݀ ܽ < ݔ < ܾ,   

Then Caputo fractional derivative of f (x) is denoted 
by  
஽ೣߙ

ഁ
= ଵ
ఊ(௡ିఉ)

ௗ೙

ௗ௫೙ ∫
௙(ఛ)

(௫ିఛ)(ഁష೙శభ)
௫
௔ ݀߬,݊ − 1 < ߚ < ݊     

or 
=஽ഀf(t)ܥ ଵ

ఊ(௡ିఈ) ∫
௙೙(ఛ)

(௧ୀఛ)ഀష೙శభ
௧
଴ ݊ ݎ݋݂,߬݀ − 1 < ߙ < ݊;   

஽ഀf(t)ܥ = ୢ౤

ୢ୲౤
f(t), for α = n,     and 

=(஽ഀf(t)ܥ)∝ܬ (ݐ)݂ − ∑ ݂௞ஶ
଴ (0ା) ௧

ೖ

௞!
 . 

(iv) Jumarie’s Derivative: The Jumarie’s Derivative of 
order 
ߙ ≥ ݂ ݊݋݅ݐܿ݊ݑ݂ ܽ ݂݋ 0 ∈ ఓܥ , ߤ ≥ −1,  ,ݏܽ ݂݀݁݊݅݁݀ ݏ݅

൯(ݔ)ఈ൫݂ܬ =
1

−݉)ߛ (ߙ
݀௠

௠ݔ݀
න ݔ) − (௠ିఈ)(ݐ
௫

௔
(ݐ)݂]

−  ,ݐ݀[(0)݂
ߙ > 0, ݔ > 0 

If f (t) is inverse Sumudu Transform of F (u), then 
transform of integer order derivative of f(t) is given by 
,  

ܵ ൤
݀௡

௡ݐ݀
൨(ݐ)݂ =

1
௡ݑ

(ݑ)ܨ] −෍ݑ௞
݀௡

௡ݐ݀

௡ିଵ

଴

 [௧ୀ଴|(ݐ)݂

If f (t) is  inverse Sumudu Transform of F (u), then 
transform of fractional  order Riemann –Liouville  
derivative of f(t) is given by ,  

[(ݐ)ఈ݂ܦ]ܵ = ఈିݑ ൥(ݑ)ܨ

−෍ݑఈି௞[ܦఈି௞݂(ݐ)|௧ୀ଴

௡

଴

൩ ,−1

< ݊ − 1 ≤ ߙ < ݊ 
Sumudu transform of Caputo order fractional deriva-
tive is given by  

[(ݐ)ఈ݂ܦ]ܵ =
[(ݐ)݂]ܵ
ఈݑ

−෍ (݂଴)
௞

(ఈି௞)ݑ .݊ − 1 < ߙ < ݊
௡ିଵ

଴

 

Now let us apply this concept to solve fractional type 
of a linear differential equation. In this part we apply 
STM. Consider the fractional order differential equa-
tion, 
ܦ
ఱ
మ(ݕ) + ܦ

య
మ(ݕ) + ܦ

భ
మ(ݕ) =  With the initial  ݐℎݏ݋ܿ

conditions y (0) = 0, ݕᇱ(0) = ᇱᇱ(0)ݕ,0 = 0 

Taking Sumudu transform on both sides, 
ݑ]

ఱ
మ + ݑ

య
మ + ݑ

భ
మ](ݑ)ݕ − ݑ

షఱ
  మ(0)ݕ − ݑ

షయ
  మݕᇱ(0) −

ݑ
షఱ
  మݕᇱᇱ(0) − ݑ

షయ
  మ(0)ݕ − ݑ

షభ
  మ   

ݑ - ᇱ(0)ݕ
షభ
  మ(0)ݕ = ଵ

(ଵି௨మ)
 

Simplifying, y (u) = (ଵି௨మ)

[௨
ఱ
మା௨

య
మା௨

భ
మ]

, Taking inverse 

Sumudu transform, 

Y(t)= ିଵ
଺√గ

݁
ష೟
మ ∫

௘
೟
మ[ୡ୭ୱ (√యమ (௧ି௨)ିටଷୱ୧୬ √య

మ
(௧ି௨)]

√௨
௧
଴ ݑ݀ −

ଵ
ଷ√గ

݁
ష೟
మ ∫

௘
೟
మ[௦௜௡ (√యమ (௧ି௨))

√௨
௧
଴ ݑ݀ − ଵ

଺
݁௧ erf൫√ݐ൯ −

ିଵ
଺√గ

݁
షయ೟
మ ∫

௘
೟
మ[ୡ୭ୱ (√యమ (௧ି௨)ାටଷୱ୧୬ √య

మ
(௧ି௨)]

√௨
௧
଴ ݑ݀ +

ିଵ
ଷ√గ

݁
షయ೟
మ ∫

௘
೟
మ[௦௜௡ (√యమ (௧ି௨))

√௨
௧
଴ ݑ݀ − ݅ ଵ

ଶ
݁ି௧erf (݅√ݐ) 

Now we solve another fractional order differential 
equation,  

൤ܦ + ܦ
ଵ
ଶ − 2൨ (ݐ)ݕ = 0, ܦ ݋ݐ ݀݁ݐ݆ܾܿ݁ݑݏ

ଵ
ଶݕ(0ା)

= (0ା)ݕ,ܿ = 0, ݐ > 0 

Taking Sumudu transform on both sides, 

ܵ ൤ܦ + ܦ
ଵ
ଶ − 2൨ (ݐ)ݕ = ܵ(0) 

Implies, 

 ଵ
௨

(ݑ)ܨ] − ݂(0)] + ி(௨)

௨
భ
మ
−   ஽

షభ
మ ௙(௧)
௨

|௧ୀ଴ − (ݑ)ܨ2 =

0 =>   
ி(௨)
௨

+ி(௨)
√௨

− ௖
௨
− (ݑ)ܨ2 = ݑ+1)   <=   0

భ
మ −

(ݑ)ܨ(ݑ2 = ܿ   => 
F (u) = ௖

(ଵା௨
భ
మିଶ௨)

   => ଶ௖
ଷ(ଵାଶ√௨)

+ ௖
ଷ(ଵି√௨)

   =>taking 

inverse sumudu transform  

F(u )= ଶ௖
ଷ
ቂ൫ଵିଶ√௨൯(ଵିସ௨) ቃ+ ௖

ଷ
[൫ଵା√௨൯(ଵି௨) ]=>  f(t)= ଶ௖

ଷ
ൣ݁ସ௧ −

 [(ݐ) erfݐ݁+ݐ݁]3ܿ+ݐerf2ݐ4݁

This solution by Sumudu transform method is novel 
and does not resemble with any solution obtained by 
other methods. 
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CONCLUSION: The prime concept of this paper is 
to establish the novel method of finding solution to 
differential equations fractional and non-fractional 
order. In this paper we solved different types of frac-
tional order differential equations by Sumudu trans-
form method. We could obtain appreciable perfect 
solutions for the numerical. This shows efficiency of 
this method in obtaining accurate solutions to ordinary 
fractional differential equations. This method is effec-
tive and successful for solving the critical fractional 
order differential equations. The prominent utility of 
this method is obtaining analytical method. It is seen 
that this method is an inspiring technique for solving 
fractional differential equations.  
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